Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tribenzoatobismuth(III): a new polymorph

Nikolay A. Tumanov, ${ }^{\text {a* }}$ Evgenia V. Timakova ${ }^{\text {b }}$ and Elena V. Boldyreva ${ }^{\text {a,b }}$

${ }^{\text {a }}$ REC-008, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation, and ${ }^{\mathbf{b}}$ Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, Novosibirsk 630128, Russian Federation
Correspondence e-mail: n.tumanov@gmail.com
Received 26 July 2010; accepted 3 September 2010
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$; R factor $=0.042 ; \omega R$ factor $=0.049$; data-to-parameter ratio $=16.1$.

A new polymorph (β) was obtained for an active pharmaceutical ingredient, bismuth tribenzoate, $\left[\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}\right]$. The new β-polymorph is 1.05 times denser than the previously known polymorph [Rae et al. (1998). Acta Cryst. B54, 438442]. In the β-polymorph, the Bi atom is linked with three benzoate anions, each of them acting as a bidentate ligand, and these assemblies with C_{3} point symmetry can be considered as 'molecules'. The structure of the β-polymorph has no polymeric chains, in contrast to the previously known polymorph. The 'molecules' in the β-polymorph are stacked along [001], so that the phenyl rings of the neighbouring molecules are parallel to each other. Based on the pronounced difference in the crystal structures, one can suppose that two polymorphs should differ in the dissolution kinetics and bioavailability.

Related literature

The synthesis of the complex is described by Timakova et al. (2010). For background to bismuth complexes, see: Mehring (2007); Kislichenko (1999); Goddard et al. (2003); Alcock (1972). For the previously known polymorph, see: Rae et al. (1998). For related structures, see: Hanawalt et al. (1938); Rosmann et al. (1995).

Experimental

Crystal data
$\left[\mathrm{Bi}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{3}\right]$
$M_{r}=572.31$
Trigonal, R3
$a=19.5608$ (19) \AA
$c=4.0967$ (5) A
$V=1357.5(2) \AA^{3}$

Data collection

Oxford Diffraction Gemini R Ultra diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.954, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.049$
$S=0.76$
1355 reflections
84 parameters
H -atom parameters constrained
$Z=3$
Mo $K \alpha$ radiation
$\mu=9.77 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.07 \times 0.01 \times 0.01 \mathrm{~mm}$

3909 measured reflections 1355 independent reflections 1076 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.087$
$\Delta \rho_{\max }=1.52 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.68 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 622 Friedel pairs
Flack parameter: -0.034 (12)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

This work was supported by a grant from BRHE (RUX0-$008-\mathrm{NO}-06$) and the program of the Presidium of Russian Academy of Sciences 'Basic research for medicine'; the diffractometer was purchased using money from the Innovation Project of Rosobrazovanie \#456 (2007-2009).

[^0]
References

Alcock, N. W. (1972). Advances in Inorganic Chemistry and Radiochemistry, edited by H. J. Emeleus \& A. G. Sharpe, pp. 1-58. New York: Academic Press.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Goddard, P. J., Klinger, J. D., Dhal, P. K., Mandeville, H. W. III, Fitzpatrick, R. J. \& Neenan, X. T. (2003). US Patent 6565895

Hanawalt, J. D., Rihh, H. W. \& Frevel, L. K. (1938). Ind. Eng. Chem. 10, 457512.

Kislichenko, V. S. (1999). Provizor, 12, 38-40.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Mehring, M. (2007). Coord. Chem. Rev. 251, 974-1006.
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Rae, A. D., Gainsford, G. J. \& Kemmitt, T. (1998). Acta Cryst. B54, 438-442.
Rosmann, D., Hiibler, K. \& Schmidt, A. (1995). Monatsh. Chem. 126, 10451050.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Timakova, E. V., Udalova, T. A. \& Yuhin, Yu. M. (2010). Chem. Sustainable Dev. 18, 79-86.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Tribenzoatobismuth(III): a new polymorph

N. A. Tumanov, E. V. Timakova and E. V. Boldyreva

Comment

Bismuth tribenzoate, as other bismuth salts, is an active pharmaceutical ingredient, which has anti-infective and analgesic effects on lymphatic tissue and mucous tunic (Kislichenko, 1999), (Goddard et al., 2003). Besides, it can be used as precursor for fine-dispersed powders of the metallic bismuth and its oxides (Mehring, 2007).

While developing a new method of synthesis of the title salt (Timakova et al., 2010), we have discovered, that the powder diffraction pattern of the compound obtained in our experiments I did not match the one calculated based on the single-crystal diffraction data for the known monoclinic polymorph of bismuth tribenzoate, which was prepared by anionic exchange of bismuth triacetate with benzoic acid (Rae et al., 1998). At the same time, the powder diffraction pattern of I agreed well with the powder diffraction pattern reported in a much earlier publication (Hanawalt et al., 1938). We have managed to select a small crystal from the batch of the synthesized compound \mathbf{I} of quality suitable for a single-crystal diffraction study. The powder diffraction pattern calculated based on the results of the structure solution using this single-crystal agreed well with the diffraction pattern of the whole polycrystalline batch, thus proving, that the crystal was representative for the whole sample. We report herein the crystal structure of the β-polymorph of bismuth tribenzoate.

The new β-polymorph \mathbf{I} is 1.05 times denser than the previously known polymorph $\mathbf{I I}$ with the space group $P 2_{1} / m$ (Rae et al., 1998): the density of \mathbf{I} at room temperature is $2.098 \mathrm{~g} / \mathrm{cm}^{3}$, and that of $\mathbf{I I}$ at 173 K is $1.99 \mathrm{~g} / \mathrm{cm}^{3}$. The structure of \mathbf{I} is isomorphous to the structure of antimony tribenzoate (Rosmann et al., 1995). In I each bismuth atom is linked to three benzoate anions, which act as bidentate ligands ($\mathrm{Bi} 1-\mathrm{O} 1$ distance is $2.254(5) \AA$) and $\mathrm{Bi} 1 — \mathrm{O} 2$ distance is $2.513(5) \AA$). These assemblies with C_{3} point symmetry can be considered as `molecules' (Fig. 1). The `molecules' in \mathbf{I} are stacked along [0 0 1] , so that the phenyl rings of the neighbouring 'molecules' are parallel to each other (Fig. 2). The carboxylate group in a ligand is rotated at 13.3 (3) ${ }^{\circ}$ relative to phenyl ring. The neighbouring 'molecules' can be supposed to interact noticeably with each other, as far as one can judge from the intermolecular Bi1 $\cdots \mathrm{O} 1^{\mathrm{i}}$ [symmetry code: (i) $x, y, z-1$] distances (3.110 (6) \AA), which are shorter, than the sum of van der Waals radii of Bi and O ($3.67 \AA$; Alcock, 1972). Still, the structure of \mathbf{I} has no polymeric chains, in contrast to the II. Phenyl ring of each benzoic anion is placed between two benzoic cations of neighbouring `molecules' (Fig. 3). In the structure of II each bismuth atom is also linked to three benzoate ligands, however, O atoms act as bridges between the neighbouring Bi atoms, thus forming infinite polymeric chains along a axis. No individual molecules can be selected in II. Based on the pronounced difference in the crystal structures, one can suppose that two polymorphs should differ in the dissolution kinetics and bioavailability.

Experimental

The title salt was precipitated from bismuth perchloric acid solution (prepared from 217 ml of distilled water, 483 ml of concentrated perchloric acid and 850 g of bismuth oxide, then diluted to $1: 10$ with water) by benzoic acid with the mole ratio of benzoate-ions to bismuth being equal to 3 . The reaction was carried out at 343 K during 1 h . The obtained white powder of bismuth tribenzoate was filtered and washed once with water and dried at room temperature.

supplementary materials

Analysis found: Bi 36.6 (7), C 43.9 (4), H 2.65 (4); calculated Bi 36.5, C 44.07, H 2.64.

The typical particle size in the powder sample was in the range $0.002-0.01 \mathrm{~mm}$, but a few larger crystals could be found. The largest of the selected crystals $(0.07 \times 0.01 \times 0.01 \mathrm{~mm})$ was fixed at a Mitigen MicroMesh holder with cryoil and used for a single-crystal X-ray diffraction study. Powder X-ray diffraction (Stoe Stadi MP, $\mathrm{Cu} \mathrm{K} \alpha_{1}$, curved germanium monochromator (111), linear PSD) has proved that the selected crystal was representative for the whole powder sample batch.

Refinement

After the positions of Bi atoms were determined by direct methods, carbon and oxygen atoms could be located from difference Fourier maps one after another in several cycles of refinement. Hydrogen atoms of the aromatic ring were placed geometrically with $\mathrm{C}-\mathrm{H}$ distance $0.93 \AA$ with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The highest peak at the electron density map is located at $1.23 \AA$ distance from Bil atom and could be a consequence of the Fourier sum truncation.

Figures

Fig. 1. An ellipsoid plot of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Hydrogen atoms were shown as s small spheres of arbitrary radii and were not labeled for clarity. Symmetry codes: (i) $-1-x+y, 1-x, z$; (ii) $1-y$, $2+x-y, z$.

Fig. 2. The stacking of bismuth tribenzoate 'molecules' along [001] in the title compound. Intermolecular Bi1 \cdots O1 contacts shown as blue dashed lines. Hydrogen atoms were omitted for clarity.

Fig. 3. The crystal packing of the title compound viewed along the c axis. Hydrogen atoms were omitted for clarity.

Tribenzoatobismuth(III)

Crystal data

$\left[\mathrm{Bi}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{3}\right]$
$M_{r}=572.31$
Trigonal, R3
$D_{\mathrm{x}}=2.098 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 964 reflections

> Hall symbol: R 3
> $a=19.5608(19) \AA$
> $c=4.0967(5) \AA$
> $V=1357.5(2) \AA^{3}$
> $Z=3$
> $F(000)=816$

Data collection

Oxford Diffraction Gemini R Ultra

 diffractometerRadiation source: fine-focus sealed tube graphite
Detector resolution: 10.3457 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.954, T_{\text {max }}=1.000$
3909 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.049$
$S=0.76$
1355 reflections
84 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
\theta & =3.6-28.0^{\circ} \\
\mu & =9.77 \mathrm{~mm}^{-1} \\
T & =295 \mathrm{~K}
\end{aligned}
$$

Needle, colourless
$0.07 \times 0.01 \times 0.01 \mathrm{~mm}$

$$
\begin{aligned}
& 1355 \text { independent reflections } \\
& 1076 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.087 \\
& \theta_{\max }=28.0^{\circ}, \theta_{\min }=3.6^{\circ} \\
& h=-25 \rightarrow 20 \\
& k=-16 \rightarrow 25 \\
& l=-5 \rightarrow 5
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0 . P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.68$ e \AA^{-3}
Absolute structure: Flack (1983), 622 Friedel pairs
Flack parameter: -0.034 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Bi1	0.0000	1.0000	0.0000	$0.02741(15)$
O1	$0.0761(3)$	$0.9819(3)$	$0.3632(14)$	$0.0364(15)$
O2	$0.0144(3)$	$0.8798(3)$	$0.0486(14)$	$0.0401(15)$
C1	$0.0647(5)$	$0.9145(5)$	$0.271(2)$	$0.0275(19)$
C2	$0.1132(4)$	$0.8836(4)$	$0.4092(19)$	$0.0264(19)$
C7	$0.1798(5)$	$0.9308(5)$	$0.585(2)$	$0.036(2)$
H7	0.1952	0.9835	0.6222	0.043^{*}
C6	$0.2236(5)$	$0.8990(5)$	$0.7059(19)$	$0.038(2)$
H6	0.2682	0.9307	0.8307	0.045^{*}
C3	$0.0925(5)$	$0.8056(5)$	$0.3449(19)$	$0.041(2)$
H3	0.0483	0.7739	0.2184	0.049^{*}
C4	$0.1376(6)$	$0.7756(5)$	$0.469(2)$	$0.048(3)$
H4	0.1233	0.7232	0.4309	0.058^{*}
C5	$0.2038(6)$	$0.8234(6)$	$0.649(2)$	$0.043(2)$
H5	0.2349	0.8038	0.7311	0.052^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi1	$0.02780(19)$	$0.02780(19)$	$0.0267(3)$	$0.01390(9)$	0.000	0.000
O1	$0.035(4)$	$0.030(4)$	$0.043(4)$	$0.015(3)$	$0.005(3)$	$-0.001(3)$
O2	$0.034(4)$	$0.045(4)$	$0.042(4)$	$0.020(3)$	$0.000(3)$	$-0.013(3)$
C1	$0.027(5)$	$0.028(5)$	$0.030(5)$	$0.016(4)$	$0.006(4)$	$0.007(4)$
C2	$0.023(5)$	$0.026(5)$	$0.029(5)$	$0.011(4)$	$0.003(4)$	$0.001(4)$
C7	$0.040(6)$	$0.036(5)$	$0.040(6)$	$0.025(5)$	$0.002(4)$	$0.000(4)$
C6	$0.035(5)$	$0.040(6)$	$0.040(6)$	$0.020(5)$	$-0.002(4)$	$0.001(5)$
C3	$0.055(6)$	$0.046(6)$	$0.035(6)$	$0.035(5)$	$0.002(5)$	$0.005(5)$
C4	$0.066(7)$	$0.035(6)$	$0.056(7)$	$0.035(6)$	$0.009(5)$	$0.014(5)$
C5	$0.050(6)$	$0.061(7)$	$0.040(6)$	$0.043(6)$	$0.008(5)$	$0.019(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Bi} 1-\mathrm{O} 1$	$2.254(5)$
$\mathrm{Bi} 1-\mathrm{O} 2$	$2.513(5)$
$\mathrm{Bi} 1-\mathrm{C} 1$	$2.782(8)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.280(8)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.260(8)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.472(10)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.394(10)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.378(10)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.372(12)$
$\mathrm{O} 1-\mathrm{Bi} 1-\mathrm{Ol}^{\mathrm{i}}$	$81.2(2)$
$\mathrm{O} 1-\mathrm{Bi} 1-\mathrm{O}^{\mathrm{i}}$	$76.50(17)$
$\mathrm{O} 1-\mathrm{Bi} 1-\mathrm{O} 2$	$53.78(18)$

$\mathrm{C} 5-\mathrm{C} 6$	$1.349(10)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.379(10)$
$\mathrm{C} 7-\mathrm{C} 2$	$1.364(10)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.8(8)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$122.0(8)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$118.8(8)$

sup-4

supplementary materials

$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Bi} 1-\mathrm{O} 2$	131.88 (18)	C7- $22-\mathrm{C} 3$	119.8 (8)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Bi} 1-\mathrm{O} 2$	119.38 (4)	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	120.6
C1-O1-Bil	100.2 (5)	C6-C7-H7	120.6
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Bi1}$	88.5 (4)	C5-C6-H6	119.0
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	117.2 (7)	C7-C6-H6	119.0
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	123.1 (7)	C4-C3-H3	120.0
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.5 (8)	C2-C3-H3	120.0
C1-C2-C7	121.2 (7)	C5-C4-H4	120.2
C1-C2-C3	118.9 (7)	C3-C4-H4	120.2
C2-C3-C4	120.0 (8)	C6-C5-H5	120.1
C3-C4-C5	119.6 (8)	C4-C5-H5	120.1
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Bi1}-\mathrm{O} 1-\mathrm{C} 1$	165.2 (4)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	163.1 (8)
$\mathrm{O} 1{ }^{\mathrm{ii}}-\mathrm{Bi1}-\mathrm{O} 1-\mathrm{C} 1$	82.8 (5)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-12.8 (11)
$\mathrm{O} 2-\mathrm{Bi} 1-\mathrm{O} 1-\mathrm{C} 1$	-140.1 (5)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-13.7 (11)
$\mathrm{O} 1-\mathrm{Bi} 1-\mathrm{O} 2-\mathrm{C} 1$	-3.1 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	170.4 (7)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Bi} 1-\mathrm{O} 1-\mathrm{C} 1$	102.3 (5)	C3-C2-C7-C6	-2.5 (12)
$\mathrm{O} 1-\mathrm{Bi} 1-\mathrm{O} 2-\mathrm{C} 1$	-27.3 (5)	C1-C2-C7-C6	-179.2 (7)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Bil}-\mathrm{O} 2-\mathrm{C} 1$	-92.0 (5)	C2-C7-C6-C5	1.7 (13)
$\mathrm{O} 2-\mathrm{Bi} 1-\mathrm{O} 2-\mathrm{C} 1$	38.8 (5)	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	2.4 (12)
$\mathrm{O} 2{ }^{\mathrm{ii}}-\mathrm{Bi1}-\mathrm{O} 2-\mathrm{C} 1$	-125.6 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	179.2 (8)
$\mathrm{Bi} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	5.0 (7)	C2-C3-C4-C5	-1.5 (13)
$\mathrm{Bi} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	-171.0 (7)	C7-C6-C5-C4	-0.9 (13)
$\mathrm{Bi} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-5.7 (8)	C3-C4-C5-C6	0.8 (13)
$\mathrm{Bi} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	170.5 (6)		

Symmetry codes: (i) $-y+1, x-y+2, z$; (ii) $-x+y-1,-x+1, z$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2224).

